Classification of extremal double circulant self-dual codes of lengths 74-88

نویسندگان

  • T. Aaron Gulliver
  • Masaaki Harada
چکیده

A classification of all extremal double circulant self-dual codes of lengths up to 72 is known. In this paper, we give a classification of all extremal double circulant self-dual codes of lengths 74–88. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On extremal double circulant self-dual codes of lengths $90$ and $92$

A classification of extremal double circulant self-dual codes of lengths up to 88 is known. We demonstrate that there is no extremal double circulant self-dual code of length 90. We give a classification of double circulant self-dual [90, 45, 14] codes. In addition, we demonstrate that every double circulant self-dual [90, 45, 14] code has no extremal selfdual neighbor of length 90. Finally, we...

متن کامل

On the performance of optimal double circulant even codes

In this note, we investigate the performance of optimal double circulant even codes which are not self-dual, as measured by the decoding error probability in bounded distance decoding. To do this, we classify the optimal double circulant even codes that are not self-dual which have the smallest weight distribution for lengths up to 72. We also give some restrictions on the weight enumerators of...

متن کامل

New extremal binary self-dual codes of lengths 66 and 68 from codes over r_k, m

In this work, four circulant and quadratic double circulant (QDC) constructions are applied to the family of the rings R k,m. Self-dual binary codes are obtained as the Gray images of self-dual QDC codes over R k,m. Extremal binary self-dual codes of length 64 are obtained as Gray images of λ-four circulant codes over R 2,1 and R 2,2. Extremal binary self-dual codes of lengths 66 and 68 are con...

متن کامل

Extremal Self - Dual Codes over Z 6 , Z 8 and Z 10

In this paper, upper bounds on the minimum Euclidean weights of Type I codes over Z6 , and self-dual codes over Z8 and Z10 , are derived for modest lengths. The notion of extremality for Euclidean weights is also introduced. We construct new extremal self-dual codes over these rings. Most of these codes are obtained via the double circulant and quasitwisted constructions. New extremal odd unimo...

متن کامل

Extension theorems for self-dual codes over rings and new binary self-dual codes

In this work, extension theorems are generalized to self-dual codes over rings and as applications many new binary self-dual extremal codes are found from self-dual codes over F2m + uF2m for m = 1, 2. The duality and distance preserving Gray maps from F4 + uF4 to (F2 + uF2) and F42 are used to obtain self-dual codes whose binary Gray images are [64, 32, 12]-extremal self-dual. An F2 + uF2-exten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006